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Abstract

In the present paper a formulation allowing the use of compact schemes in the finite volume context on arbitrary

meshes is presented. The proposed formulation is based on the use of an implicit formula to evaluate the fluxes on the

cell faces. A series of numerical experiments for a 2D model convection equation, a flat plate, a subsonic vortical

problem as well as the LES simulation of channel flow has been carried out. The results indicate an important im-

provement in obtained accuracy compared to a standard central finite volume formulation.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

In the solution of many physical problems, one is often confronted with flows possessing a wide range of

space and time scales. In order to resolve all the scales of such flows, highly accurate methods, which can

properly represent all the scales of the solution, are needed. In recent years, so-called compact (or Pad�e
type) schemes [1,2] have gained increasing popularity in applications such as DNS [3], LES [4,5], and

computational aeroacoustics [3,6,7], as an alternative to spectral methods. The main advantage of these
schemes is that, while providing a better representation of the shorter length scales of solution, as compared

to classical finite-difference and finite-volume schemes, they allow to use more complex mesh geometries,

whereas spectral methods are limited to applications in simple domains and with simple boundary con-

ditions. This better representation of the shorter length scales of the solution can be attributed to the

implicit nature of these schemes. In the present paper the term �compact� is used to refer to this implicit

aspect. It does not necessarily imply that the proposed schemes are more compact than standard schemes

with the same order of accuracy.
*Corresponding author.

E-mail address: chris.lacor@vub.ac.be (C. Lacor).

0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.01.025

mail to: chris.lacor@vub.ac.be


536 C. Lacor et al. / Journal of Computational Physics 198 (2004) 535–566
Originally, compact schemes were defined in the finite-difference context, in one dimension and on a

uniform grid. One of the first applications of compact finite-differencing to solving differential problems can

be found in the book by Collatz [8,9].
However, it is only recently, in view of the applications mentioned above, that there is a renewed interest

in these type of schemes.

An important issue is the use of compact schemes in multidimensions and their accuracy on general, i.e.,

non-Cartesian and also non-uniform grids.

In a finite-difference context, this is usually dealt with by formulating the compact schemes in the

computational space, e.g. [10–14]. However, as mentioned in [3], the use of the Jacobian transformation can

lead to an important reduction of the accuracy of the scheme in case of non-smoothly varying mesh

spacings because of numerical errors in the determination of the derivatives of the transformation ap-
pearing in the Jacobians. Gamet et al. [3] take the non-uniformity of the mesh into account by adapting the

coefficients of the compact stencils on Cartesian grids. If the grid is non-Cartesian, a Jacobian transfor-

mation still has to be used. Note that a similar approach was formulated earlier by Goedheer and Potters

[15], for a second-order partial differential equation.

Although, in the framework of the finite-difference approach the compact schemes are relatively easy to

construct on irregular grids, special attention must be paid to the conservation properties of the scheme, as

the conservation is not automatically guaranteed.

The finite volume (FV) method, on the other hand, is inherently conservative. Until now, only few
papers dealing with compact schemes in the FV context can be found in the literature.

To our knowledge, one of the first papers dealing with a formulation of compact schemes within the FV

context is by Gaitonde and Shang [16]. The scheme is based on an implicit reconstruction step, relating cell

face values to cell-averaged values. A similar approach is proposed more recently by Kobayashi [17].

However, both papers only deal with linear equations and uniform Cartesian grids. Straightforward ex-

tension on non-uniform Cartesian meshes or non-Cartesian meshes causes the scheme to loose its higher-

order accuracy. It is to be noted that this is also the case for the standard central and MUSCL type

schemes, which are often referred to as being second-order accurate whereas this is only the case on uniform
Cartesian grids, the order on non-uniform and non Cartesian grids being (much) less.

In an attempt to formulate a higher-order accurate FV scheme on arbitrary grids, another route was

followed in [18]. This approach is further detailed in the present paper and applied to a series of problems

ranging from linear convection, Euler, laminar Navier–Stokes to a basic LES test problem.

It is to be mentioned that a similar approach was independently developed by Kobayashi and co-workers

[19,20] as an extension of their work on linear equations to the non-linear incompressible Navier–Stokes

system. Although results are only shown on Cartesian grids, the proposed formulation can also be used for

non-Cartesian grids by working in computational rather than physical space. In that case, as already
mentioned above, errors in the calculation of the derivatives of the transformation might reduce the global

accuracy of the scheme, cf. [3]. This is why in the current paper a formulation in physical space is chosen.

The outline of the present paper is as follows. First, the approach in 1D is explained, both for linear

convection and non-linear convection (Euler) and on uniform and non-uniform grids. Next, the method is

extended to the multi-dimensional Euler and Navier–Stokes system. In a third section, results are shown for

a series of test problems. The paper ends with the main conclusions.
2. Finite volume compact schemes in 1D

The main idea of a Pad�e type finite-difference scheme is to construct the approximation of the differential

equation to be solved, with not only node values being unknowns, but also the derivatives. For the first

derivative of any scalar quantity u, the Pad�e type approximation can be written as follows [1]:
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cu0iþ2 þ ju0iþ1 þ u0i þ ju0i�1 þ cu0i�2 ¼ C
uiþ3 � ui�3

6h
þ B

uiþ2 � ui�2

4h
þ A

uiþ1 � ui�1

2h
; ð1Þ

where h is the grid-spacing (in the assumption of uniform mesh) and c, j, A, B, and C are coefficients that
determine the accuracy of the approximation and which can be derived by developing all the variables in a

Taylor series about point i, and requiring all the coefficients of the resulting expansion to vanish up to some

definite term. The first non-zero coefficient will determine the formal truncation error.

Similarly, one can construct compact approximations for higher-order derivatives.

Let us now consider the following generic 1D advection equation

ou
ot

þ of ðuÞ
ox

¼ 0: ð2Þ

This equation can represent a linear equation, in which case it is assumed that

f � a � u; ð3Þ

with �a� a constant convection speed. Alternatively, Eq. (2) can be non-linear with f ðuÞ some non-linear

relation.

In the FV approach, Eq. (2) is integrated over the mesh cells. For cell i, with cell faces i� 1=2 and

iþ 1=2, one obtains:

o

ot

Z xiþ1=2

xi�1=2

udxþ fiþ1=2 � fi�1=2 ¼ 0: ð4Þ

This is still an exact relation, even if the mesh is non-uniform, i.e., the different cells have different widths.

To discretize Eq. (4), both the integral and the fluxes on the interfaces x ¼ xiþ1=2 and x ¼ xi�1=2 must be

approximated. Before doing so, one has to choose whether pointwise values or cell-averaged values of u are

used. The pointwise value ui, for instance, can be defined, in the center of the cell i. The cell-averaged value

of cell i, which will be denoted �ui can be defined as

�ui ¼
1

Dx

Z xiþ1=2

xi�1=2

uðxÞdx: ð5Þ

Note the use of the notation �ui indicating a cell-averaged value, as opposed to ui indicating the pointwise

value of �u� in the cell center.

In a ‘‘pointwise’’ approach, a scheme of high-order accuracy in space does not only require the fluxes to

be approximated with high-order accuracy but also the integral (appearing after the time derivative). One,

therefore, needs a high-order quadrature formula for the calculation of the integral. Note that strictly

speaking the latter is only necessary for high-order spatial accuracy in unsteady calculations. In steady

calculations, the time derivatives vanish and the spatial accuracy only depends on the accuracy with which

the cell face fluxes are approximated.
In a ‘‘cell-averaged’’ approach, the integral does not have to be evaluated since its value is stored (it is the

cell-averaged value) and Eq. (4) is simplified to

o�ui
ot

Dxþ fiþ1=2 � fi�1=2 ¼ 0: ð6Þ

This approach seems therefore preferable, since both for unsteady and steady problems, a high-order

spatial accuracy is guaranteed by using a high-order approximation for the cell face fluxes. For this
reason, the cell-averaged approach will be assumed in the remainder of this paper. Note that the use of

cell-averaged values was already advocated by Kobayashi [17].
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Next, the fluxes fiþ1=2 and fi�1=2 have to be evaluated.

Since the relation between f and u is known, this reduces to the problem of evaluating uiþ1=2 and ui�1=2,

i.e., the value of the unknowns at the cell faces. In classical schemes, such as the second-order central or
MUSCL type schemes, an explicit formula is used to obtain cell face values from cell centered values. Here,

an approach based on an implicit interpolation formula is proposed [18,21]:

bui�3=2 þ aui�1=2 þ uiþ1=2 þ auiþ3=2 þ buiþ5=2 ¼ a
�uiþ1 þ �ui

2
þ b

�uiþ2 þ �ui�1

2
þ c

�uiþ3 þ �ui�2

2
: ð7Þ

Note that the unknowns in the right-hand side are the cell-averaged values as defined in Eq. (5). The reason

for this implicit step is that one can easily achieve high orders of accuracy with relatively small stencils.

Note also the resemblance with the implicit step of the Pad�e type schemes, Eq. (1). This is also the approach

proposed in [17] and, in a slightly different formulation, also in [16].
The coefficients a, b, c, and a, b in (7) can be derived by developing all the variables in a Taylor series

about point iþ 1=2 and requiring all the coefficients of the resulting expansion to vanish up to some definite

term. For the cell-averaged values in the right-hand side, the Taylor series have to be integrated over the

cells. Consider as an example the term �uiþ2. Taylor expansion of the pointwise value u around point iþ 1=2
gives:

u ¼ uiþ1=2 þ
ou
ox

����
iþ1=2

xþ 1

2

o2u
ox2

����
iþ1=2

x2 þHOT; ð8Þ

where HOT stands for �higher-order terms� and the x-coordinate has its origin in point iþ 1=2. Inserting
this expansion in the definition of uiþ2, (5), one obtains

�uiþ2 ¼
1

Dx

Z xiþ5=2

xiþ3=2

uðxÞdx ¼ uiþ1=2 þ
3

2
Dx

ou
ox

����
iþ1=2

þ 7

6
Dx2

o2u
ox2

����
iþ1=2

þHOT: ð9Þ

A similar approach is used for the remaining terms in the right-hand side, whereas a regular Taylor ex-

pansion can be used for the pointwise value appearing in the left-hand side of (7). By equating terms of the

same order in Dx in the left- and right-hand side, the order of the interpolation is chosen. This leads to the
following results. The approximation is second-order accurate provided the following relation is satisfied:

aþ bþ c ¼ 1þ 2aþ 2b: ð10Þ

For higher-order accuracy, additional relations have to be fulfilled.

For fourth order:

aþ ð23 � 1Þbþ ð33 � 23Þc ¼ 23!
2!
ðaþ 22bÞ: ð11Þ

For sixth order:

aþ ð25 � 1Þbþ ð35 � 25Þc ¼ 25!
4!
ðaþ 24bÞ: ð12Þ

For eighth order:

aþ ð27 � 1Þbþ ð37 � 27Þc ¼ 27!
6!
ðaþ 26bÞ: ð13Þ

For 10th order:

aþ ð29 � 1Þbþ ð39 � 29Þc ¼ 29!
8!
ðaþ 28bÞ: ð14Þ
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For example, for fourth order, assuming b ¼ b ¼ c ¼ 0, one obtains from (10) and (11):

1
4
ui�1=2 þ uiþ1=2 þ 1

4
uiþ3=2 ¼ 3

4
�uiþ1

�
þ �ui

�
: ð15Þ

It is important to note that the conditions above will be different if pointwise unknowns instead of cell-

averaged unknowns are used. For example, instead of (15), one obtains the following fourth-order inter-
polation formula (on uniform grids), [1]:

1
6
ui�1=2 þ uiþ1=2 þ 1

6
uiþ3=2 ¼ 2

3
uiþ1ð þ uiÞ: ð16Þ

It can easily be verified that for linear convection, on a uniform grid, the resulting scheme is identical to the

compact Finite Difference schemes formulated in [1]. Assuming linear convection with speed a ¼ 1

ou
ot

þ ou
ox

¼ 0; ð17Þ

the present approach leads to

o�ui
ot

þ Du
Dx

����
i

¼ 0: ð18Þ

With

Du
Dx

����
i

� uiþ1=2 � ui�1=2

Dx
; ð19Þ

the following equation is obtained for Du=Dx according to Eq. (7)

b
Du
Dx

����
i�2

þ a
Du
Dx

����
i�1

þ Du
Dx

����
i

þ a
Du
Dx

����
iþ1

þ b
Du
Dx

����
iþ2

¼ c
2
ð�uiþ3 � �ui�3Þ þ

b
2

�
� c
2

�
ð�uiþ2 � �ui�2Þ þ

a
2

�
� b
2

�
ð�uiþ1 � �ui�1Þ: ð20Þ

The Lele scheme leads to

oui
ot

þ u0i ¼ 0; ð21Þ

with u0i satisfying Eq. (1). Comparing Eqs. (18), (20) with (21), (1) it is seen that both approaches are

equivalent provided

c ¼ C
3
; 2ðb� cÞ ¼ B; a� b ¼ A; b ¼ c; a ¼ j: ð22Þ

Note, however, that in the Lele scheme, ui represents a pointwise value, whereas in the present approach �ui
is a cell-averaged value.

The spectral behaviour of this scheme can be studied by comparing the numerical convection speed with

the actual convection speed for Fourier waves with increasing wavenumbers, e.g. [1]. The resulting plot,

which can also be found in, e.g. [1] (since the present finite volume schemes are identical to their finite

difference versions on uniform, 1D grids), is given here once more for completeness, Fig. 1.
The stability analysis of the resulting schemes can be found in [22], see also [1], and leads to the following

condition:

r6
s

~kmax

; ð23Þ



Wavenumber

M
od

ifi
ed

 W
N

.00 1.05 2.09 3.14
.00

1.05

2.09

3.14
exact
2nd order
4th order explicit
4th order implicit
6th order implicit
8th order implicit

Fig. 1. Resolution of different schemes.

540 C. Lacor et al. / Journal of Computational Physics 198 (2004) 535–566
with r the CFL number, �s� the segment on the imaginary axis, where the time advancement scheme is

stable, and ~kmax the maximum modified wavenumber of the scheme, i.e., the maximum ordinate in Fig. 1.

For schemes (15) and (16), one finds, resp., ~kmax ¼
ffiffiffi
3

p
and ~kmax ¼

ffiffiffi
2

p
, as can be verified in Fig. 1. Assuming

a standard fourth-order Runge–Kutta scheme (RK4) for time integration (s ¼ 2:85), this leads to the

following stability conditions:

r6 1:645 ð24Þ

for scheme (15) and

r6 2:015 ð25Þ

for scheme (16).

Two further remarks can be made here.

First, schemes with an accuracy higher than 4 can be obtained by considering a more extended stencil
than (15), cf. Eq. (7). In the present paper we restrict ourselves to the former stencils, i.e., leading to tri-

diagonal systems and with an explicit (right-hand side) part involving only the cells in the immediate

neighbourhood of the cell face. This is also advantageous for the treatment near the boundaries where in

fact no special procedure is needed.

Second, the formulas above have been derived assuming uniform grids. The resulting scheme is therefore

only of high-order accuracy on such grids. However, more general expressions can be derived on non-uniform

grids. This will be discussed in Section 3 where the extension to multidimensions is considered. The formula�s
developed there will reduce to their 1D counterpart on Cartesian (but not necessarily uniform grids).

For the convection equation, the spatial discretization is now complete. For example, a fourth-order

accurate scheme results by writing Eq. (15) for all cell face values and solving the resulting tridiagonal

system. No special treatment is needed near the boundaries. On the inlet boundary, the flux (or u) will be

imposed, whereas it is extrapolated at the outlet. The cell face fluxes follow immediately from the cell face

values, through the relation f ðuÞ.
In the non-linear case, an alternative approach consists in first calculating cell-averaged fluxes (�fi, de-

noted with a � superscript similar as cell-averaged values) from the cell-averaged values, followed by an

interpolation, similar to (7), to get the fluxes on the cell face:
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bfi�3=2 þ afi�1=2 þ fiþ1=2 þ afiþ3=2 þ bfiþ5=2 ¼ a
�fiþ1 þ �fi

2
þ b

�fiþ2 þ �fi�1

2
þ c

�fiþ3 þ �fi�2

2
: ð26Þ

The disadvantage of this approach (in combination with cell-averaged values of u) is that the calculation of

the cell-averaged flux is not straightforward. Indeed

�fi �
1

Dx

Z xiþ1=2

xi�1=2

f dx; ð27Þ

and hence the relation

�fi ¼ f ð�uiÞ ð28Þ

is not valid unless f is a linear function of u. In all other cases one can show that the leading error term is of

second order, i.e.,

�fi ¼ f ð�uiÞ þOðDx2Þ; ð29Þ

reducing the resulting scheme to second-order accuracy. An alternative route would be to calculate

pointwise fluxes fi but then pointwise values ui are needed and these are not available. Therefore, this

approach will not be used.
3. Finite volume compact schemes in multidimensions: the linear case

Now let us consider the linear 2D scalar advection equation

ut þ fx þ gy ¼ 0; ð30Þ

where f ¼ au and g ¼ bu, a and b being constants.

Consider the structured mesh of Fig. 2. Note that the mesh does not have to be Cartesian. Integrating

Eq. (30) over the cells and making use of the Gauss theorem, one can writeZ Z
Xi;j

ou
ot

dxdy þ
I
ABB0A0A

ð�gdxþ f dyÞ ¼ 0; ð31Þ

with Xi;j the cell volume (or cell area in 2D).

To discretize this equation, both surface and line integrals must be approximated. Before doing this, as

for the 1D case described above, one has to choose whether point-wise or cell-averaged values of u will be
used. For the reasons mentioned above, again the cell-averaged approach is chosen. Eq. (31) reduces to

(assuming a fixed grid, i.e., Xi;j does not change with time)

Xij
o

ot
�ui;j þ

I
ABB0A0A

ð�gdxþ f dyÞ ¼ 0; ð32Þ

with �ui;j the cell-averaged value, i.e.,

�ui;j �
1

Xi;j

Z Z
Xi;j

uðx; yÞdxdy: ð33Þ

In contrast with the 1D case, where the cell face fluxes appeared after integrating over the cell volume, now

line integrals of the fluxes appear. This complicates matters, compared to the 1D case. If one would try a

similar approach, calculating face values of the unknowns, one has to make sure that the line integral of the
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flux is calculated from these values with enough accuracy. This would be possible with Gauss integration

but would require face values of �u� in the different Gauss points. Therefore, a more direct approach is

proposed, where, instead of passing via cell face values of u, the line integrals itself are directly calculated

[18]. A similar approach was independently proposed by Pereira et al. [19,20].

As all the integrals are approximated in the same manner, we only consider
R B
A f dy. Also note that, due to

the assumption of linearity, the integrals of the fluxes reduce to integral of the unknown �u�, i.e.,
R B
A udy in

the present example. Following the strategy of constructing the Pad�e type schemes, the idea is to use an

implicit formula for evaluating the line integrals over the cell faces.
First, assume that the grid is Cartesian and uniform.Once the cell-averaged values of u are given in the cells,

one can calculate the line integral ~u �
R B
A udy by means of, e.g., the following implicit formula, cf. Eq. (15)

1
4
~ui�1=2;j þ ~uiþ1=2;j þ 1

4
~uiþ3=2;j ¼¼ 3

4
�uiþ1;j

�
þ �ui;j

�
; ð34Þ

where the operator � indicates, as before, cell-averaged values and the operator ~ a value integrated over a

cell face (i.e., a line integral)

~ui�1=2;j ¼
1

yB0 � yA0

Z B0

A0
udy;

~uiþ1=2;j ¼
1

yB � yA

Z B

A
udy;

~uiþ3=2;j ¼
1

y 00 � y 00

Z B00

00
udy:

ð35Þ
B A A
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It can be easily shown that (34) is fourth-order accurate on a Cartesian, uniform mesh in a similar way as

was shown in 1D, i.e., by developing u in a 2D Taylor series around point iþ 1=2; j. Note that a still higher-

order accuracy can be achieved by widening the stencil of Eq. (34), leading to, cf. Eq. (7):

b~ui�3=2;j þ a~ui�1=2;j þ ~uiþ1=2;j þ a~uiþ3=2;j þ b~uiþ5=2;j

¼ a
�uiþ1;j þ �ui;j

2
þ b

�uiþ2;j þ �ui�1;j

2
þ c

�uiþ3;j þ �ui�2;j

2
: ð36Þ

However, if one uses the above schemes, either with Eq. (34) or Eq. (36) on general (i.e., non-Cartesian,

non-uniform) meshes, the order of accuracy of the Cartesian, uniform mesh is not guaranteed anymore.

Actually, it can be verified that a first-order error term appears in the expressions (34) and (36). Although

the errors are small on slightly distorted meshes, in general, one may need to use a formula that takes the

metrics of the grid into account.

In order to guarantee a high-order accuracy on an arbitrary grid, the stencil of Eq. (34) must be ex-

tended. For the sake of compactness, the following scheme is proposed:

b~ui�1=2;j þ ~uiþ1=2;j þ c~uiþ3=2;j ¼
X1
n¼0

X1
m¼�1

an;m�uiþn;jþm: ð37Þ

Coefficients an;m; b; c can be chosen so that (37) has the highest accuracy possible. To fit all the coefficients

of the Taylor series of both right-hand and left-hand sides of (37) up to order 4, one has to satisfy 10

relations, the details of which are given in Appendix A.

However, there are only eight coefficients in (37), which means that the linear system of equations to be

solved is overdefined. Therefore, on arbitrary meshes, it is not possible to approximate
R B
A udy with fourth-

order accuracy on the stencil given by (37). Third-order accuracy can be obtained if the first six relations

((A.2)–(A.7), cf. Appendix A) are satisfied. This leaves 2 degrees of freedom in defining the eight coeffi-

cients. This freedom can then be used to minimize the leading error term, which is of order 3 and contains

the third-order derivatives with respect to x and y, as well as the mixed derivatives. The sum of the squares

of the coefficients of these terms is then minimized. These coefficients are the differences between left-hand-

side and right-hand side of Eqs. (A.8)–(A.11) of Appendix A. We will denote this scheme as CS3 (Compact

Scheme, third order).

On Cartesian meshes (not necessarily uniform though), the leading truncation error of the CS3 scheme
vanishes, making the scheme fourth-order accurate. It can also be verified from the expressions in Appendix

A that the formula (37) reduces to a 1D formula (i.e., only the coefficients an;0; n ¼ 0; 1 are non-zero) on a

Cartesian grid. If in addition the grid is uniform, relation (34) is retrieved.

The resulting stencil on a non-uniform Cartesian grid, which is 1D as mentioned above, can then also be

used for 1D convection to replace expression (15) and to guarantee fourth-order accuracy on a non-uni-

form 1D mesh.

Numerical tests, see Section 6, have shown however that on very distorted grids the third-order accurate

scheme, as defined above, shows a strong oscillatory behaviour, making the calculations unstable. This
could be related to a lack of diagonal dominance in Eq. (37). Since this is difficult to analyse mathematically

on arbitrary grids, it was verified in a numerical experiment. It turned out that diagonal dominance was

always largely satisfied.

To overcome the stability problem, a scheme with formal accuracy of one order less was constructed. b
and c were set to 1=4 in Eq. (37), their values in the formulation for a uniform Cartesian mesh, and the

remaining six coefficients an;m were chosen by imposing second-order accuracy of (37). In this case only the

first three constraints ((A.2)–(A.4), cf. Appendix A) have to be satisfied leaving 3 degrees of freedom. Again

these are used to minimize the sum of the square of the coefficients of the leading error term (which is now
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of second order). These coefficients are the differences between left-hand side and right-hand side of Eqs.

(A.5)–(A.7) of Appendix A. This scheme will be denoted as CS2.

As for the CS3 scheme, the CS2 scheme becomes 1D on Cartesian grids. If the grid is uniform, fourth-
order accuracy is achieved. If the Cartesian grid is non-uniform, the CS2 scheme reduces to a second-order

accurate scheme, as on arbitrary grids. Note that this is in contrast with the CS3 scheme which guarantees

fourth-order accuracy on all Cartesian grids, uniform or non-uniform.

Although, the formal order of accuracy of the proposed scheme is only 2 (except on Cartesian, uniform

grids where it is 4), this order is guaranteed on arbitrary grids, whereas the order of the standard central

scheme is much less than 2 on such grids. In addition one has to make the distinction between the order of

approximation of a scheme, as based on a Taylor expansion, and the resolution of the scheme which is

related to its ability to represent Fourier modes of increasing wavenumbers accurately [23]. For applications
in LES, and a fortiori in DNS, the latter property becomes more important in order to simulate the different

scales in the flow as accurate as possible. On Fig. 1 it can be seen that the present scheme, which reduces to

the standard fourth-order compact scheme on a uniform grid in 1D, behaves much better than the standard

second-order central scheme, especially for the higher wavenumbers. This will also be confirmed in the

numerical tests presented in Section 6.

The procedure described above can now be repeated for all integrals of �u� along the cell faces, making

the discretization of Eq. (32) (in this linear case) complete.
4. Finite volume compact schemes for the Navier–Stokes system

Now, consider the 2D Navier–Stokes system written in the form

oU
ot

þ oFx
ox

þ oFy
oy

¼ oGx

ox
þ oGy

oy
; ð38Þ

where U is the set of conservative variables and Fx, Fy and Gx, Gy are components of the advective and

diffusive flux vectors, respectively:

U ¼

q
qu
qv
qE

0BB@
1CCA; ð39Þ
Fx ¼

qu
qu2 þ p
quv

ðqE þ pÞu

0BB@
1CCA; Fy ¼

qv
quv

qv2 þ p
ðqE þ pÞv

0BB@
1CCA; ð40Þ

with q, u, v, p, E, respectively, density, x, and y components of velocity, pressure, and total energy per unit

mass.

As in the previous section, consider the structured, arbitrary mesh of Fig. 2. Integrating Eq. (38) over the

cells and making use of the Gauss theorem, one can writeZ Z
Xi;j

oU
ot

dxdy þ
I
ABB0A0A

ð�Fy dxþ Fx dyÞ ¼
I
ABB0A0A

ð�Gy dxþ Gx dyÞ: ð41Þ
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For the reasons explained before, it is chosen to store cell-averaged values of the unknowns, instead of

pointwise. Since in the present code the primitive variables V � ðq; u; v; pÞ are stored, the cell-averaged

values of these variables will be used. Again, we use the notation�to indicate a cell-averaged variable and �V
is therefore shorthand notation for the cell-averaged primitive variables:

�V ¼

�q
�u
�v
�p

0BB@
1CCA: ð42Þ

Let us now consider the discretization of the line integrals in (41) and first focus on the convective terms.

4.1. Compact scheme for the convective terms

As all the integrals are approximated in the same manner, we will only consider
R B
A Fx dy. As opposed to

the previous section, the fluxes are now non-linear functions of the unknowns (primitive variables). The

proposed scheme consists of two steps.

The first step is similar as for the linear case: the integrals along the cell faces of the primitive variables

are approximated using an implicit formulation, similar as in Eq. (37). In shorthand notation:

b~Vi�1=2;j þ ~Viþ1=2;j þ c~Viþ3=2;j ¼
X1
n¼0

X1
m¼�1

an;m �Viþn;jþm; ð43Þ

where

~Vi�1=2;j ¼
1

yB0 � yA0

Z B0

A0
V dy;

~Viþ1=2;j ¼
1

yB � yA

Z B

A
V dy;

~Viþ3=2;j ¼
1

yB00 � yA00

Z B00

A00
V dy:

ð44Þ

The coefficients of this interpolation are only geometry-dependent and therefore identical to those derived for

the linear case of previous section. Again, the third-order accurate scheme shows an oscillatory behaviour,

resulting in stability problems on very distorted grids, and the second-order accurate version is chosen.

The second step of the method consists in evaluating the integrals of the fluxes which, in contrast to the
scalar convective case, contain non-linear terms, cf. the expressions for the fluxes of Eq. (40). Consider for

instance the first component of Fx. The corresponding line integral is
R B
A qðx; yÞuðx; yÞdy. The following

formula may be used to approximate this integral:

1

yB � yA

Z B

A
qudy � 1

yB � yA

Z B

A
qdy

1

yB � yA

Z B

A
udy: ð45Þ

If one works out both sides of this equation, using Taylor expansions around the cell face center (e.g., point

O for face iþ 1=2; j in Fig. 2), it appears that the above approximation introduces an error term of order 2.

Using shorthand notation, the correct relation is

fquiþ1=2;j ¼ ~qiþ1=2;j~uiþ1=2;j þ q0
xu

0
x

Dx2

12
þ q0

yu
0
y

Dy2

12
þ ðq0

xu
0
y þ q0

yu
0
xÞ
DxDy
12

þOðh4Þ; ð46Þ
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where 0 indicates the first-order derivative in point O. The leading truncation error is thus of order 2, as-

suming that the derivatives of the variables do not vanish (if this is the case it means that q and u are

constant and the complete error term in relation (46) vanishes). A similar relation was used by Pereira et al.
[19,20]. Since they work in computational space, a simplified relation can be used valid on Cartesian grids.

If one only aims at a second-order accurate scheme (irrespective whether the grid is Cartesian or not) re-

lations of type (45) can beusedwithout any further correction.First, the line integrals of the primitive variables

along the cell faces are evaluatedusingEq. (43).Next relationsof type (45) areused to evaluate the line integrals

of the different components of the fluxes. The resulting scheme will be second-order accurate on any mesh.

If one wants to retrieve a fourth-order accurate scheme on Cartesian grids, relation (46) instead of (45)

has to be used. If the derivatives are approximated with second-order accuracy the resulting approximation

becomes fourth-order accurate. The derivatives q0
x; u0x; q0

y ; u0y in (46) are calculated as an average of two
cell-averaged values of derivatives in cells next to the interface. For example (cf. Fig. 2):

u0x
��
iþ1=2;j

¼ 1

2

ou
ox

����
iþ1;j

 
þ ou

ox

����
i;j

!
: ð47Þ

Cell-averaged values of derivatives are calculated by means of the finite volume method (cf. Fig. 2):

ou
ox

����
i;j

¼ 1

Xi;j
euiþ1=2;jðyB
�

� yAÞ � eui�1=2;jðyB0 � yA0 Þ þ eui;jþ1=2ðyB0 � yBÞ � eui;j�1=2ðyA0 � yAÞ
�
: ð48Þ

Note that euiþ1=2;j, etc., have already been calculated by (43).

The same procedure can also be used for the flux components depending on three variables, e.g., second

component of Fy . One can show that

gquv ¼ ~q � ~u � ~vþþðq0
xu

0
xvO þ q0

xuOv
0
x þ qOu

0
xv

0
xÞ
Dx2

12
þ ðq0

yu
0
yvO þ q0

yuOv
0
y þ qOu

0
yv

0
yÞ
Dy2

12

þ ðq0
xuy

h
þ q0

yuxÞvO þ ðq0
xvy þ q0

yvxÞuO þ ðu0xvy þ u0yvxÞqO

iDxDy
12

þOðh4Þ: ð49Þ

Apart from the derivatives q0
x, u

0
x, v

0
x, q

0
y , u

0
y , v

0
y also the pointwise values qO, uO, vO now have to be ap-

proximated with second-order accuracy. The following formula is used, e.g., for uO:

uO ¼ uiþ1;j þ ui;j
2

: ð50Þ

The approach above allows to calculate all flux integrals with second-order accuracy on arbitrary grids and

fourth-order accuracy on Cartesian, uniform grids. This completes the scheme for the convective terms of

the Navier–Stokes equations. Note that because of the use of tridiagonal systems, cf. Eq. (43), no special
procedure near the boundaries is needed. Equations of type (43) can be written for all cell faces, except

those on the boundaries. On the latter faces, the flux is determined by the boundary conditions.

4.2. Compact schemes for the viscous terms

The discretization of the viscous fluxes corresponds to the evaluation of the right-hand-side term in Eq.

(41). Since the viscous fluxes contain derivatives of the velocity and the temperature, one has to determine

the line integrals (over the cell faces) of these derivatives with high-order accuracy.
The same procedure as for the inviscid fluxes is used. A relation similar to (43) is used, where, in the left-

hand side the line integral of the derivative appears and in the right-hand side the cell averaged values of the
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derivative. The obtained coefficients are identical to those in Eq. (43). The cell-averaged values of the

derivative are calculated as follows:

ou
ox

� �
i;j

� 1

Xi;j

Z
Xi;j

ou
ox

dX ¼ 1

Xi;j

I
ABB0A0A

unx dS ¼ 1

Xi;j

I
ABB0A0A

udy: ð51Þ

The line integrals in (51) are already available from the discretization of the convective fluxes. Relation (51)

also requires that the cell volumes are calculated with high enough accuracy. In the present application,

linear elements of the serendipity family are used [24]. The volume is obtained through Gaussian quad-

rature with fourth-order accuracy.

The analysis of the order of accuracy leads to exactly the same coefficients (b; c; an;m) as for the con-

vective terms. Similarly as for the convective terms, a third-order accurate and a second-order accurate

scheme (on arbitrary grids) can be derived for the viscous terms. In the present paper, the second-order
scheme was systematically chosen for its better stability properties.

Assuming the viscosity is constant, the viscous terms are linear and a correction procedure, as applied for

the convective terms, cf. Eqs. (46) and (49), is not needed. Even with a changing viscosity, and no correction

procedure applied, the scheme always remains second-order accurate. This was estimated as being enough

for the viscous terms and hence no correction procedure was applied.
5. Time integration

In the model problems discussed below, as well as in the Navier–Stokes applications, time-integration is

performed using multistage low storage Runge–Kutta (RK) schemes:

U1 ¼ U0 þ DtC1ResðU0Þ; ð52Þ
U2 ¼ U0 þ DtC2ResðU1Þ; ð53Þ
. . . ð54Þ
UN ¼ U0 þ DtCNResðUN�1Þ; ð55Þ

where ResðUÞ is the residual. For linear problems with constant propagation coefficients, a Nth stage RK

scheme is Nth-order accurate in time, provided the RK coefficients are chosen as follows:

Ck ¼
1

N � k þ 1
; ð56Þ

where k is the RK stage number. For non-linear problems, however, the formal accuracy in time of the

scheme is only of second order.

In all the calculations below, where the spatial accuracy of the proposed schemes are evaluated, the time

step was always taken sufficiently small to ensure that the errors of time integration were much smaller than

those due to the spatial discretization.
6. Numerical results

The present finite-volume formulation for compact schemes has been developed with the final aim of

applying it to LES simulations of turbulence. Before any LES calculations were performed, a series of tests
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for a scalar model problem, a 2D Euler problem, and a laminar Navier–Stokes problem were carried out.

The results will be systematically compared with those of the classical second-order central scheme (CE). In

this scheme, the line integral of the unknown on the cell face is obtained as an arithmetic average of the cell-
averaged values in the cells left and right of the interface, i.e., referring to Fig. 2, and using the notation of

Eqs. (43) and (44):

~Viþ1=2;j ¼ 1
2

�Vi;j
�

þ �Viþ1;j

�
: ð57Þ

This allows to determine the cell face flux. Note that, since this scheme is at most second-order accurate,

Eq. (45) can be used, i.e., correction (46) is not needed. This is the standard implementation of the central

scheme (although there, one usually reasons in terms of pointwise values) which is used in many codes,

where it is combined with second- and fourth-order dissipation terms, [25]. These dissipation terms, which

are added to control stability and monotonicity, are omitted in the present implementation of the CE

scheme.

6.1. Model problems

To test the present formulation of compact schemes, a series of numerical experiments has been carried

out for a number of 1D and 2D advection problems

ut þ ðauÞx þ ðbuÞy ¼ 0: ð58Þ

In all simulations, a six-stage low storage RK scheme was used to advance in time. The RK coefficients

were taken as 1=6; 1=5; 1=4; 1=3; 1=2; 1. This scheme is sixth-order accurate in time for linear problems.

Since only the spatial accuracy was to be examined, the time step was taken very small to make sure that

the errors, occurring due to time integration, are negligible, as compared to those arising from spatial

discretization.
6.1.1. Two-dimensional Gaussian wave on a uniform and a non-uniform grid

In the first experiment, a 2D signal was propagated in a domain �0:5 < x < 0:5, �0:5 < y < 0:5. A 2D

Gaussian wave of the following shape:

u0ðx; yÞ ¼ 1
4
exp 154:037ðx2

�
þ y2Þ

�
ð59Þ

was used as an initial solution, and periodic boundary conditions were imposed in both x and y directions.

For each test case, the wave was propagated during 5 s with a speed given by a ¼ 0:8, b ¼ 0:6.
In Figs. 3–5 the results obtained on the Cartesian uniform mesh (80� 80 cells) are presented. Three

schemes were used: the classical second-order central scheme (CE), the present compact finite-volume
scheme with non-uniform coefficients (CS2nu) (using Eq. (37) as opposed to Eq. (34), and a classical fourth-

order central scheme (CE4). In the present application, this latter scheme corresponds to choosing

~uiþ1=2;j ¼ 7
12

�uiþ1

�
þ �ui

�
� 1

12
�uiþ2

�
þ �ui�1

�
: ð60Þ

Both the CS2nu and CE4 scheme are fourth-order accurate on this Cartesian grid. Results with the compact

scheme are in excellent agreement with the exact solution (circular isolines). The CE scheme shows im-

portant errors both in terms of location of the peak of the solution (which should be in the middle of the

calculation domain) and symmetry. The quality of the CE4 results is clearly inferior to that of the CS2nu
results. This is explained by the better spectral behaviour of CS2nu, cf. Fig. 1 (curves with long and small

dashes). Note that all schemes are non-monotone and therefore produce some wiggles in the solution. The
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Fig. 3. Two-dimensional advection of a Gaussian wave on a Cartesian uniform grid: isolines of the solution with the CE scheme.
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Fig. 4. Two-dimensional advection of a Gaussian wave on a Cartesian uniform grid: isolines of the solution with the CS2nu scheme.
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oscillations of the CS2nu scheme, however, are very small, especially compared to those of CE, and form

some �noise� that could be removed by filtering, e.g. [12], or by adding some artificial dissipation, see also

Section 6.1.3.

The previous calculations were repeated on the curvilinear mesh of Fig. 6 (80� 80 cells). This mesh was

obtained from the previous, Cartesian mesh by moving the mesh points according to:
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Fig. 5. Two-dimensional advection of a Gaussian wave on a Cartesian uniform grid: isolines of the solution with the CE4 scheme.
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Fig. 6. Curvilinear mesh used for the 2D advection of a Gaussian wave.
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xi;j ¼ xi;j þ 0:02 sinð2pyi;jÞ;
yi;j ¼ yi;j þ 0:04 sinð16pxi;jÞ;

ð61Þ

with xi;j, yi;j the coordinates of the uniform mesh. The aim of the present test is to investigate the effect of

using a compact scheme with uniform coefficients (CS2u) as compared to one with non-uniform coefficients,

CS2nu (used in the previous test). Fig. 7 shows isolines of the solution obtained with both schemes. For
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Fig. 7. Two-dimensional advection of a Gaussian wave on a curvilinear grid: isolines of the solution with the CS2u scheme (left) and

CS2nu scheme (right).
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Fig. 8. Two-dimensional advection of a Gaussian wave on a curvilinear grid: isolines of the solution with the CE scheme (left) and the

CE4 scheme (right).
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comparison the isolines obtained with the CE and CE4 scheme are given in Fig. 8. The improvement in

accuracy with the CS2nu scheme is visible from the isoline plot. Theoretically the CS2nu scheme should be

second-order accurate on this mesh, whereas the CS2u will be less than second-order accurate. Also note

that both CS2nu, CS2u solutions are superior to the CE4 solution.

An analysis of the order of accuracy and the absolute error on a sequence of meshes with different levels

of resolution is provided in Fig. 9. The measured order of accuracy for both schemes is, in contrast with

what one would expect theoretically, 4. This can be explained by the smoothness of the grid, which, being
refined, locally becomes straight and uniform, although non-orthognal. Nevertheless, the absolute error is

smaller (by approximately a factor of 2) for the CS2nu scheme.
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Fig. 9. Two-dimensional advection of a Gaussian wave on a curvilinear grid: grid refinement study of the mean error: 1, CE scheme; 2,

CS2u scheme; 3, CS2nu scheme.
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6.1.2. One-dimensional Gaussian wave on a non-uniform grid

To show the importance of accounting for the non-uniformity of the mesh, a 1D test case (propagation

of a Gaussian wave for 1 s) was calculated on a non-uniform grid consisting of alternating bigger and

smaller cells with the size ratio 11/9. Periodic boundary conditions were imposed. The 1D version of the
CS2nu and CS2u schemes of the previous test are compared. Fig. 10 shows the results obtained with both

schemes. It is seen that, in spite of the relatively small non-uniformity, the CS2u scheme shows some errors

both with respect to the wave speed and the wave amplitude.
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Fig. 10. One-dimensional advection of a Gaussian wave on a mesh with cell size ratio 11/9: 1, CS2u scheme; 2, CS2nu scheme; 3, exact

solution.
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Fig. 11. One-dimensional advection of a Gaussian wave on a mesh with cell size ratio 3: squares, CS2u scheme; circles, CS2nu scheme;

triangles, CS3nu scheme.
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The same test case was repeated for a mesh with cell size ratio of 3. The CS2nu scheme is now also

compared to the compact scheme CS3nu , Fig. 11. The latter scheme is fourth-order accurate on this mesh,

whereas the former only second order. The improvement is clearly visible.
6.1.3. Rotating Gaussian wave

A Gaussian wave rotating around the origin x ¼ 0; y ¼ 0 is described by Eq. (58) with a ¼ �2py,
b ¼ 2px (varying advection coefficients). The grid used in all calculations is an ‘‘O’’ type grid. In circum-

ferential direction, periodicity is assumed, while at the inner and outer boundaries the solution is put to

zero.

Note that, since the convection coefficients are not constant anymore, the use of a formula such as

1

yB � yA

Z B

A
audy ¼ 1

yB � yA

Z B

A
ady

1

yB � yA

Z B

A
udy ð62Þ

introduces a second-order error and makes the global scheme second-order accurate. Therefore, in con-

trast to the previous tests, a correction, as proposed in Eq. (46), has to be used to reduce the error in the

above relation to fourth-order. The corresponding scheme is therefore denoted as CS2cnu, where the su-

perscript �c� indicates that the correction is added to the relation above (the �nu� subscript indicates the use
of non-uniform coefficients as before). To show the importance of this correction, simulations were also

made with a compact scheme with no corrections (i.e., relation (62) is used), which is denoted as CS2ncnu
scheme.

The isolines of the solution after one rotation of the signal are presented in Fig. 12 for both the classical

central scheme (CE) and CS2cnu.

Note that in the CE scheme, no artificial dissipation was used. The CE scheme is second-order accurate

on uniform Cartesian grids, but on distorted meshes the accuracy is less. The CS2cnu scheme is second-order

accurate on arbitrary meshes, but becomes fourth-order accurate on a Cartesian mesh. Hence, if the mesh is
not too irregular, the accuracy of this scheme will be close to fourth order.

A significant improvement in accuracy for the compact scheme is clearly seen. The isolines of the exact

solution correspond to circular contours, which are much better approximated by the compact approach.
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Fig. 12. Two-dimensional rotation of a Gaussian wave: isolines of the solution with the CE scheme (left) and CS2cnu scheme (right)

after 1 rotation.
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Fig. 13. Two-dimensional rotation of a Gaussian wave: solution along the circular grid line passing through the center of the Gaussian

wave after 1 rotation (squares, CE scheme; circles, CS2cnu) scheme.
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Note again the �noise� in the solution due to the non-monotonicity of the schemes. The amplitude of the

wiggles is much less for the compact scheme, as shown in Fig. 13, which plots the solution along a cir-

cumferential line through the center of the Gaussian wave. Note also the effect of the dispersive error of the

CE scheme causing the numerical solution to lag behind the physical solution. The third-order accurate

compact scheme CS3cnu was also tried for this test case. It gave almost identical results as CS2cnu, and the

solution is therefore not shown.

Fig. 14 shows the solution along the circumferential line through the center of the Gaussian wave of the
CS2cnu and CE scheme after 10 rotations. The results of the former scheme are still quite good (although the
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Fig. 14. Two-dimensional rotation of a Gaussian wave: solution along the circular grid line passing through the center of the Gaussian

wave after 10 rotations (squares, CE scheme; circles, CS2cnu) scheme.
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oscillations have increased), whereas in the results of the latter scheme the Gaussian wave can hardly be

recognized.

It is to be noted that after a sufficiently long integration time (about 50 rotations for this particular test

case), during which the oscillations of the CS2cnu scheme can build up, the simulation starts to diverge. To

avoid this, some filtering procedure could be used or some artificial dissipation could be added. A for-

mulation based on artificial selective damping, e.g. [26], is currently being investigated [27].

The achieved order of accuracy is studied numerically by calculations on a range of grids with decreasing
mesh size. The results are shown in Fig. 15, where the logarithm of the mean error is plotted as a function of

the logarithm of the mesh size. In this plot, results for the CS2ncnu scheme are also included. It can be seen

that the CS2ncnu fails to maintain fourth-order accuracy. The CS2cnu scheme seems fourth-order accurate,
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although theoretically it should only be second-order accurate on this non-Cartesian grid. The explanation

is that the present mesh locally becomes uniform and Cartesian when refined, and therefore the measured

order of accuracy is the same as the order obtained on Cartesian meshes. For the same reason the CS3cnu
scheme is also fourth-order accurate (not shown).

6.2. Two-dimensional laminar flat Plate

The flat plate boundary layer problem is considered next. The flow was calculated with both CE and

CS2cnu scheme on a relatively coarse mesh (100� 25). The Blasius solution was used as an inlet boundary

condition as well as a reference solution. The inlet and outlet were located in cross-sections corresponding

to Reynolds numbers Rex ¼ 1600 and 11,600 based on distance from the leading edge. Figs. 16 and 17 show
the profiles of non-dimensional streamwise and normal components of velocity

u� � u
u0

; v� � v

ðmu0=xÞ1=2
ð63Þ

(where u0 is a freestream velocity) as a function of the similarity variable

g ¼ y

ðmx=u0Þ1=2
: ð64Þ

The computed velocity profiles are presented in the cross-sections corresponding to the Reynolds

number Rex ¼ 9600. The CE scheme produces poor results, while the results obtained with the CS2cnu
scheme are in good agreement with the Blasius solution.

6.3. Two-dimensional Subsonic vortical flow

The capability of the numerical schemes to accurately advect vortical structures is an important issue in

DNS and LES of turbulence. Therefore, one of the problems chosen to demonstrate the accuracy of the

proposed high-order compact method was a subsonic inviscid vortical flow, see also [10,19]. A vortex is
Eta
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    .00  

    .40  

    .80  

   1.20  
Blasius profile
2nd order
compact

Fig. 16. Two-dimensional flat plate laminar boundary layer: streamwise component of velocity as a function of similarity variable

(Rex ¼ 9600).
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Fig. 17. Two-dimensional flat plate laminar boundary layer: normal component of velocity as a function of similarity variable

(Rex ¼ 9600).
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convected in otherwise uniform flow with freestream velocity U1 ¼ 10 m/s. The initial solution is imposed

by prescribing a vortical structure centered around x ¼ 0; y ¼ 0 as follows:

u ¼ U1 � Cy
R2

expð�r2=2Þ;

v ¼ Cx
R2

expð�r2=2Þ;

p ¼ P1 � qC2

2R2
expð�r2Þ; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

R2

r
:

ð65Þ

The vortex is propagated in x-direction with the advection speed U1, the shape of the vortex being pre-

served. As a result, an analytical solution, with which the results of numerical simulations can be compared,

is available.

In all the calculations presented here, the values for C and R were chosen as follows:

C ¼ 2; R ¼ 0:1: ð66Þ

The Euler equations were solved on both Cartesian uniform and distorted meshes with different levels of
resolution (Dx=R ¼ 0:375; 0:25; 0:187; 0:125). Periodic boundary conditions were imposed in both di-

rections. Fig. 18 shows isolines of the solution for, resp., the CE and CS2cnu scheme after the vortex has

propagated over a distance of 1.5 m. The CS3 scheme was unstable for the present simulation and therefore

results are not shown. Fig. 19 shows a more quantitative comparison with the vorticity along the vertical

line passing through the center of the vortex (Dx=R ¼ 0:25). The results obtained with the compact scheme

are in very good agreement with the exact solution, while the CE scheme produces significant errors. In

Fig. 20 the streamwise component of the velocity along the horizontal line passing through the center of the

vortex is presented and compared to the exact solution.
In Fig. 21, a more systematic analysis of the absolute error and order of accuracy is provided. The

logarithm of the average error is plotted as a function of the logarithm of the mesh size. From these results

the actual order of accuracy can be calculated and corresponds to the inclination of the curves in Fig. 21.



Fig. 18. Two-dimensional subsonic, vortical Euler flow on a Cartesian grid: isolines of the solution obtained with the CE scheme (left)

and the CSc
nu scheme (right).
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Fig. 19. Two-dimensional subsonic, vortical Euler flow on a Cartesian grid: vorticity along the vertical centerline with CE (squares)

and CSc
nu (circles) schemes.
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The compact scheme CS2cnu performs very well, with the measured order of accuracy (5.0) even higher than

expected theoretically. This was also reported in [10], but the reason for this is not clear.

The benefit of using the proposed compact scheme can be estimated for this test case. From the plot in

Fig. 21, one can evaluate how much finer the mesh needs to be for the CE scheme in order to produce a

solution with an error level comparable to that of the CSc
nu scheme. One finds that for a 40� 40 mesh in case

of the CSc
nu scheme, one would need a 150� 150 mesh for the CE scheme which has about 14 times more

grid points. Taking into account that the present compact method, in its current implementation, is about
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Fig. 20. Two-dimensional subsonic, vortical Euler flow on a Cartesian grid: streamwise component of velocity along the horizontal

centerline with CE (squares) and CSc
nu (circles) schemes.
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Fig. 21. Two-dimensional subsonic, vortical Euler flow on a Cartesian grid: grid refinement study of the mean error. CE (squares) and

CSc
nu (circles) schemes.
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2.5 times more expensive in terms of CPU, one arrives at the conclusion that (at least for this test case) the

proposed compact scheme is 5–6 times more efficient than the CE scheme.

A similar series of calculations was carried out on a sequence of curvilinear grids, one of which is shown

in Fig. 22 .

Fig. 23 shows the isolines of the solution obtained with, resp., CE and CSc
nu scheme. In Fig. 24 the

streamwise component of the velocity along the vertical grid line through the center of the vortex is pre-

sented and compared to the exact solution. Again, the superior behaviour of the compact scheme in terms
of accuracy is clearly confirmed. Also note there is a deterioration of the CE scheme results when switching

from the Cartesian to the curvilinear grid. The solution shows some oscillatory behaviour in front of the



Fig. 22. The curvilinear grid used for the 2D subsonic, vortical Euler flow problem.

Fig. 23. Two-dimensional subsonic, vortical Euler flow on a curvilinear grid: isolines of the solution obtained with the CE scheme (left)

and the CSc
nu scheme (right).
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velocity peak and the overshoot is also slightly higher on the curvilinear grid. Such deterioration is not

found for the CSc
nu scheme.

6.4. LES of channel flow

The capability of Pad�e type schemes to accurately represent the short length scales of the solution makes

them very attractive for direct and large-eddy simulations of turbulence. To test the proposed formulation of
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Fig. 24. Two-dimensional subsonic, vortical Euler flow on a curvilinear grid: the streamwise component of velocity along vertical grid

line passing through the center of the vortex. CE (squares) and CSc
nu (circles) schemes.
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compact schemes in the context of these applications, the periodic channel flow was simulated by means of

LES. The Reynolds number based on channel half width and wall friction velocity was 180. The dimensions

of the computational domain were chosen 4p (streamwise direction), 2 (normal direction from wall to wall),
and 4p=3 (spanwise direction). Periodicity was assumed in both streamwise and spanwise directions. A

source term acounting for the pressure difference in streamwise direction was added to the streamwise

component of the momentum equation. The mesh used for the calculations was 33� 65� 33, in respectively,

streamwise, normal, and spanwise directions with hyperbolic tangent clustering from wall to wall. As

subgrid-scale closure model, the Smagorinsky model [28] with a constant coefficient (Cs ¼ 0:07) was used,

mt ¼ CsðdDÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Si;jSi;j

p
: ð67Þ

To force the subgrid-scale stresses to vanish at the walls the following damping function was used:

d ¼ 1

	
� exp

�
� yþ
25

�3
1=2
: ð68Þ

The CS2cnu scheme was used in homogeneous directions and the CE scheme was used in the direction from

wall to wall. The obtained results are compared with those obtained using the CE scheme in all directions.
In Fig. 25 the calculated mean streamwise velocity profile is shown. Results obtained with the CE scheme

in all directions are marked with square symbols whereas circles correspond to the solution obtained using

the CS2cnu scheme in homogeneous directions. Both results were obtained on the same mesh and with the

same closure model. As a reference, results obtained with the CE scheme but with a dynamic Smagorinsky

subgrid-scale model [29] and DNS results of Kim et al. [30] are shown. The improvement resulting from

using the compact method is significant, the LES solution being close to the DNS solution. This im-

provement might be explained by the better resolution in the spanwise direction. It is known that this is

especially important in LES of channel flow. A similar improvement is observed when comparing the
turbulent velocity fluctuations (Fig. 26). Although the peak in streamwise velocity fluctuations is still

overestimated compared to DNS (which is typical for LES of channel flow), it is closer to the DNS results.

The location of the peak is much better predicted and corresponds to that of the DNS results. Towards the
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Fig. 25. LES of channel flow at Res ¼ 180: mean streamwise velocity (1: CE scheme, Cs ¼ 0:07; 2: CSc
nu scheme, Cs ¼ 0:07; 3: results

Morinishi [29] (second-order scheme, dynamic subgrid-scale model); 4: DNS results Kim et al. [30]).
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Fig. 26. LES of channel flow at Res ¼ 180: turbulence intensities obtained with CE and CSc
nu schemes.
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center of the channel the agreement with DNS is clearly superior. Similar observations can be made for the

transverse velocity fluctuations. Whereas the CE results start deviating from the DNS results immediately

off the wall, the compact results follow the DNS results more closely, especially for the spanwise (w)

fluctuations.
7. Conclusions

A new compact scheme has been formulated in the finite-volume context. The proposed approach is

applicable to the solution of unsteady compressible Navier–Stokes equations on arbitrary meshes. The
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metrics of the grid are taken directly into account, without the use of a coordinate transformation. To test

the method, a series of numerical experiments has been carried out for a 1D and 2D model problem, a

subsonic vortical 2D Euler problem, and a 2D laminar flat plate. The schemes were then used in the LES
simulation of the channel flow at Re ¼ 3300. A significant improvement in the quality and accuracy of the

results was obtained as compared to classical finite-volume methods.
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Appendix A

All variables in (34) are developed in 2D Taylor series around point O (Fig. 2). Aseui�1=2;j; euiþ1=2;j; euiþ3=2;j are line integrals and uiþn;jþm are area integrals , these Taylor series have to be
integrated over the interfaces ði� 1=2; jÞ; ðiþ 1=2; jÞ; ðiþ 3=2; jÞ and the cells shown in Fig. 2. This results

in an equation containing terms in
uO;
ou
ox

����
O

;
ou
oy

����
O

;
o2u
ox2

����
O

;
o2u
oxoy

����
O

;
o2u
oy2

����
O

;
o3u
ox3

����
O

;
o3u

ox2 oy

����
O

;
o3u

oxoy2

����
O

;
o3u
oy3

����
O

; . . .

ðA:1Þ

Equating coefficients of the term in uO in left-hand and right-hand side gives an equation for b; c; an;m (Eq.

(A.2). By satisfying this relation. one ensures that (34)) is first-order accurate. Equating coefficients of the

next two terms (in ou=oyjO; o2u=ox2jO) gives two additional equations, which, together with the first one,

are conditions for second-order accuracy of (34).

The 10 relations that have to be satisfied in order to achieve a fourth-order accurate Pad�e type formula

for approximation of the fluxes on the interfaces are:

bþ 1þ c ¼
X1
n¼0

X1
m¼�1

an;m; ðA:2Þ
2bDxi;j þ 2cDxiþ1;j ¼
X1
n¼0

X1
m¼�1

an;mT x
iþn;jþm; ðA:3Þ
2bDyi;j þ 2cDyiþ1;j ¼
X1
n¼0

X1
m¼�1

an;mT
y
iþn;jþm; ðA:4Þ
b 2Dx2i;j

�
þ 1

24
DX 2

i�1=2

�
þ 1

24
DX 2

iþ1=2 þ c 2Dx2iþ1;j

�
þ 1

24
DX 2

iþ3=2

�
¼
X1
n¼0

X1
m¼�1

an;mT x2

iþn;jþm

,
2; ðA:5Þ
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b 4Dxi;jDyi;j

�
þ 1

12
DXi�1=2DYi�1=2

�
þ 1

12
DXiþ1=2DYiþ1=2 þ c 4Dxiþ1;jDyiþ1;j

�
þ 1

12
DXiþ3=2DYiþ3=2

�
¼
X1
n¼0

X1
m¼�1

an;mT
xy
iþn;jþm; ðA:6Þ
b 2Dy2i;j

�
þ 1

24
DY 2

i�1=2

�
þ 1

24
DY 2

iþ1=2 þ c 2Dy2iþ1;j

�
þ 1

24
DY 2

iþ3=2

�
¼
X1
n¼0

X1
m¼�1

an;mT
y2

iþn;jþm

,
2; ðA:7Þ
b
4

3
Dx3i;j

�
þ 1

12
Dxi;jDX 2

i�1=2

�
þ c

4

3
Dx3iþ1;j

�
þ 1

12
Dxiþ1;jDX 2

iþ3=2

�
¼
X1
n¼0

X1
m¼�1

an;mT x3

iþn;jþm

,
6; ðA:8Þ
b 4Dx2i;jDyi;j

	
þ 1

12
Dyi;jDX 2

i�1=2

�
þ 2Dxi;jDXi�1=2DYi�1=2

�

þ c 4Dx2iþ1;jDyiþ1;j

	

þ 1

12
Dyiþ1;jDX 2

iþ3=2

�
þ 2Dxiþ1;jDXiþ3=2DYiþ3=2

�

¼
X1
n¼0

X1
m¼�1

an;mT
x2y
iþn;jþm

,
2; ðA:9Þ
b 4Dxi;jDy2i;j

	
þ 1

12
Dxi;jDY 2

i�1=2

�
þ 2Dyi;jDXi�1=2DYi�1=2

�

þ c 4Dxiþ1;jDy2iþ1;j

	
þ 1

12
Dxiþ1;jDY 2

iþ3=2

�
þ 2Dyiþ1;jDXiþ3=2DYiþ3=2

�

¼
X1
n¼0

X1
m¼�1

an;mT
xy2

iþn;jþm

,
2; ðA:10Þ
b
4

3
Dy3i;j

�
þ 1

12
Dyi;jDY 2

i�1=2

�
þ c

4

3
Dy3iþ1;j

�
þ 1

12
Dyiþ1;jDY 2

iþ3=2

�
¼
X1
n¼0

X1
m¼�1

an;mT
y3

iþn;jþm

,
6; ðA:11Þ

where

Dxi;j ¼ xi;j � xO; Dyi;j ¼ yi;j � yO: ðA:12Þ

(xi;j and yi;j are the coordinates of the center of the cell i; j, Fig. 2)

DXi�1=2 ¼ xB0 � xA0 ; DXiþ1=2 ¼ xB � xA; DXi�1=2 ¼ xB00 � xA00 ; ðA:13Þ
DYi�1=2 ¼ yB0 � yA0 ; DYiþ1=2 ¼ yB � yA; DYi�1=2 ¼ yB00 � yA00 ; ðA:14Þ
T x
iþn;jþm ¼

Qx
iþn;jþm þ Dxiþn;jþmSiþn;jþm

Siþn;jþm
; ðA:15Þ
T y
iþn;jþm ¼

Qy
iþn;jþm þ Dyiþn;jþmSiþn;jþm

Siþn;jþm
; ðA:16Þ
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T x2

iþn;jþm ¼ 1

Siþn;jþm
Qx2

iþn;jþm

�
þ 2Dxiþn;jþmQx

iþn;jþm þ Dx2iþn;jþmSiþn;jþm

�
; ðA:17Þ
T xy
iþn;jþm ¼ 1

Siþn;jþm
Qxy

iþn;jþm

�
þ Dyiþn;jþmQx

iþn;jþm þ Dxiþn;jþmQ
y
iþn;jþm þ Dxiþn;jþmDyiþn;jþmSiþn;jþm

�
; ðA:18Þ
T y2

iþn;jþm ¼ 1

Siþn;jþm
Qy2

iþn;jþm

�
þ 2Dyiþn;jþmQ

y
iþn;jþm þ Dy2iþn;jþmSiþn;jþm

�
; ðA:19Þ
T x3

iþn;jþm ¼ 1

Siþn;jþm
Qx3

iþn;jþm

�
þ 3Dxiþn;jþmQx2

iþn;jþm þ 3Dx2iþn;jþmQ
x
iþn;jþm þ Dx3iþn;jþmSiþn;jþm

�
; ðA:20Þ
T x2y
iþn;jþm ¼ 1

Siþn;jþm
Qx2y

iþn;jþm

�
þ Dyiþn;jþmQx2

iþn;jþm þ 2Dxiþn;jþmQ
xy
iþn;jþm

þ 2Dxiþn;jþmDyiþn;jþmQx
iþn;jþm þ Dx2iþn;jþmQ

y
iþn;jþm þ Dx2iþn;jþmDyiþn;jþmSiþn;jþm

�
; ðA:21Þ
T xy2

iþn;jþm ¼ 1

Siþn;jþm
Qxy2

iþn;jþm

�
þ Dxiþn;jþmQ

y2

iþn;jþm þ 2Dyiþn;jþmQ
xy
iþn;jþm

þ 2Dxiþn;jþmDyiþn;jþmQ
y
iþn;jþm þ Dy2iþn;jþmQ

x
iþn;jþm þ Dxiþn;jþmDy2iþn;jþmSiþn;jþm

�
; ðA:22Þ
T y3

iþn;jþm ¼ 1

Siþn;jþm
Qy3

iþn;jþm

�
þ 3Dyiþn;jþmQ

y2

iþn;jþm þ 3Dy2iþn;jþmQ
y
iþn;jþm þ Dy3iþn;jþmSiþn;jþm

�
; ðA:23Þ
Qxsyp

i;j ¼
Z Z

Xi;j

ðx� xi;jÞsðy � yi;jÞp dxdy; ðA:24Þ

and Xi;j is the area of the cell i; j
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